
On the Use of Parametric-CAD Systems and
Cartesian Methods for Aerodynamic Design

Marian Nemec1, Michael J. Aftosmis2, and Thomas H. Pulliam3

1 NASA Ames Research Center, Moffett Field, CA, USA nemec@nas.nasa.gov
2 aftosmis@nas.nasa.gov
3 tpulliam@mail.arc.nasa.gov

1 Introduction

Automated, high-fidelity tools for aerodynamic design face critical issues in
attempting to optimize real-life geometry and in permitting radical design
changes. Success in these areas promises not only significantly shorter design-
cycle times, but also superior and unconventional designs. To address these
issues, we investigate the use of a parametric-CAD system in conjunction with
an embedded-boundary Cartesian method. Our goal is to combine the mod-
eling capabilities of feature-based CAD with the robustness and flexibility
of component-based Cartesian volume-mesh generation for complex geometry
problems. We present the development of an automated optimization frame-
work with a focus on the deployment of such a CAD-based design approach
in a heterogeneous parallel computing environment.

2 Problem Formulation

The aerodynamic optimization problem consists of determining values of de-
sign variables such that a given objective function is minimized, while satis-
fying the governing flow equations and any other side constraints. Examples
of objectives and constraints include performance functionals, such as lift and
drag, and geometric quantities, such as volumes and thicknesses. The flow
equations are the three-dimensional Euler equations of a perfect gas.

A modular framework is constructed to solve the optimization problem
based on two optimizers: 1) a genetic algorithm (GA), and 2) a BFGS quasi-
Newton algorithm, where the objective function gradient is evaluated via
central-differences. At the core of the framework is the analysis module that
consists of a CAD-system interface and the Cart3D flow-analysis package.
The primary components of Cart3D include a Cartesian grid generator [1],
and a flow solver [2]. Below, we provide a description of the CAD interface,
followed by the optimization framework. See [3] for additional details.

2 M. Nemec, M. J. Aftosmis, and T. H. Pulliam

3 CAD Interface: CAPRI

The CAD interface controls the regeneration of a CAD model in response to a
design change and provides a corresponding watertight surface triangulation.
This is accomplished by the use of the Computational Analysis PRogramming
Interface (CAPRI) [4, 5]. CAPRI exposes the master-model feature tree of
the CAD model and allows direct modification of parameters within that
tree. Most design variables are associated directly with values exposed in
the feature tree. Depending on the CAD-face topology of the model, CAPRI
triangulates the faces by using either a quality triangulation algorithm [6, 4], or
by decomposing quadrilaterals generated with an auto-blocking algorithm [7].

4 Optimization Framework

Geometry ClientsGeometry Server

Optimization Case 1

Optimization Case 2

Optimization Case K

Large Parallel Computers

CAD Request
Repository

(Storage Disk)

SS
H

 L
ay

er
 (

E
th

er
ne

t)

Storage of CAD
Parts and Assemblies

Node 1
CAD & CAPRI

Node 2
CAD & CAPRI

Node N
CAD & CAPRI

Fig. 1. Layout of the interface between optimiza-
tion processes and geometry server

The synthesis of CAPRI with
the optimization process is
shown in Fig. 1. At each it-
eration of the optimization,
CAD geometry requests are
generated for different design-
variable values and these are
placed in a central reposi-
tory. Independent of the op-
timization runs, a distributed
geometry server is initiated
that consists of multiple CAD
nodes. The nodes process the
geometry requests by retriev-
ing the required parts and
assemblies, regenerating the
CAD models, and providing
surface triangulations for the
optimization processes. Since
the geometry requests are independent, the geometry server achieves nearly
linear scalability.

The number of CAD nodes is limited by the number of available CAD
licenses, as each node consumes one license. An immediate concern is that the
CAD nodes may become the bottleneck of the optimization process, idling the
processors of the compute engines. To avoid such bottlenecks, we dynamically
allocate the processors of the optimization to the number of completed surface
triangulations. Figure 2 illustrates this on an example with 64 processors. At
the start of each design iteration, all processors are dedicated to the solution of
the first returned surface triangulation from the CAD nodes. This is the base
state of the gradient method and the first chromosome of the GA, denoted as

CAD-Based Aerodynamic Design 3

“Geometry 1” in Fig. 2. Upon completion of the first geometry analysis, we
check the number of completed surface triangulations. These are processed
by the CAD nodes while the analysis of the first geometry is performed on
the compute engine, denoted as “Geometries 2 . . .K” in Fig. 2. The number
of processors is distributed among the completed surface triangulations and
multiple analysis modules are executed on subsets of the available processors.
This dynamic, coarse-grained parallelism provides not only concurrent execu-
tion of serial tasks, but also ensures high parallel efficiency of the flow solver
by limiting the number of processors available to each analysis module.

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Cart3D
Analysis
16 CPUs

Optimizer

 Geometries
 2 ... K

Geometries
K+1 ... N

Geometry 1

Cart3D
Analysis
64 CPUs

Fig. 2. Dynamic allocation of processors to mask
the latency of CAD geometry processing

The worst case scenario oc-
curs when the wall-clock time
required for the processing of
a geometry request exceeds
the time for completion of
the flow solution. If only one
CAD node is available, then
this CAD node would not be
able to feed the compute en-
gine with geometries without
processor idle time. This sit-
uation is unlikely, since CAD
model regeneration and tes-
sellation tasks have computa-
tional complexity of O(N2),
while volume mesh generation
and flow solution tasks are
O(N3).

5 Design Example

Fig. 3. CAD model configuration (before
component intersection)

We investigate the performance of
the optimization framework for a
design example based on the con-
figuration shown in Fig. 3. This
generic model is a CAD assembly
of five parts, where the wing and
canard are “attached” to the fuse-
lage via two parameters, their hor-
izontal and vertical locations, re-
spectively. These parameters are
constrained to intersect the projec-
tion of the fuselage on the symme-
try plane within the CAD system. This simple construct avoids non-physical
configurations, for example wings that detach from the fuselage during the

4 M. Nemec, M. J. Aftosmis, and T. H. Pulliam

optimization, even if the fuselage shape and dimensions change. The CAD
model is constructed using the Pro/ENGINEER CAD system.

Before presenting optimization results, we characterize the performance
of the optimization framework. Table 1 presents average CPU timing results
for the CAD model regeneration and surface triangulation using CAPRI. It is
clear from Table 1 that CAD-model regeneration times are not a significant
expense even for problems with many design variables. While the time re-
quired for surface triangulation is not prohibitive, it is important to avoid all
unnecessary re-triangulations during the optimization. This is accomplished
by caching an associated baseline triangulation for each part prior to the
optimization.

Table 1. Average CPU time for CAD-model regeneration and
tessellation (600 MHz R14000 SGI Octane Workstation)

Part CAD-Model Tessellation Number of Tessellation
Regeneration (s) (s) Triangles Algorithm

Fuselage 2.0a 93.3 ≈ 41, 000 Quality-based

Wing 3.0b 16.5 ≈ 50, 000 Right-triangle

a No shape-section change, only global parameter modifications
b Shape-section change and planform parameter modifications

Table 2 presents average timing results for individual components within
the analysis module. The volume mesh contains roughly 1.5 million cells for a
half-span model of the configuration. The time for the mesh-solution transfer
algorithm used to “warm-start” finite-difference gradient computations is also
shown. Comparison of Tables 1 and 2 indicates that the time required to

Table 2. Wallclock times for individual components of the anal-
ysis module (600 MHz R14000 SGI Origin 3000)

Component Time (s) Algorithm

Mesh Generationa 132.0 Serial
Flow Solution (flowCart 1.2) 455.0 Parallel (64 processors)

Mesh Solution Transfer 26.0 Serial

a Also includes component intersection, domain decomposi-
tion, and multigrid coarse-mesh generation

complete a CAD-model regeneration and surface triangulation is a factor of six
smaller than the time required for a flow solution. This means that by the time
the analysis module completes the flow solution of the first chromosome of the

CAD-Based Aerodynamic Design 5

GA or the base-state of the gradient method, six new surface triangulations
are ready for analysis, ensuring good CPU efficiency.

We consider the optimization problem of attaining a nearly zero pitching
moment coefficient by optimizing the canard/tail control surface. The design
variables are the control surface aspect ratio (AR), twist (tip relative to root
section), and axial position along the center line of the fuselage. The problem
has two local optima, the tail or canard configuration, with the canard config-
uration as the global optimum due to an aft location of the center of gravity.
For optimization using the GA, the canard area is also a design variable. This
introduces the possibility of a topology change in the design space. We use 16
chromosomes for each generation of the GA. For the quasi-Newton algorithm,
the control surface area is kept constant (60.0). The freestream Mach number
is 0.85, and the angle of attack is 1.0 deg.

The objective function uses a quadratic-penalty formulation, with a target
lift coefficient of 0.222 and a target pitching moment coefficient of 0.001. The
initial pitching moment is −0.0714. Figure 4(a) shows the convergence history
of the objective function. The label “Design Iteration” refers to the number of
generations evaluated by the GA, and the number of objective function and
gradient evaluations by the quasi-Newton algorithm. The GA converges within
5 design iterations, requiring only 80 function evaluations. The quasi-Newton
algorithm requires 56 function evaluations to trim the configuration.

Figures 4(b) and 4(c) show the initial and final designs for the quasi-
Newton algorithm. The control surface converged to the minimum allowable
forward location on the fuselage (8% of fuselage length), a twist angle of 2.98
deg., and AR of 6.03. Figure 4(d) shows the final design using the GA. For this
case, the optimization converged to the upper bound of the control surface
area, which is 60.0, a forward location of 8.2% of fuselage length, a twist angle
of 3.41 deg., and AR of 4.36. The small differences in the two designs indicate
that there may be many control surfaces that trim this configuration and
further constraints are required to define a unique problem.

6 Conclusions

A modular framework for the aerodynamic optimization of complex geome-
tries has been developed. The framework includes a direct interface to a
parametric-CAD system that allowed an efficient manipulation and surface
tessellation of generic-CAD models. Furthermore, the use of a component-
based Cartesian method reduced the demands on the CAD system by reusing
cached component triangulations, and improved the robustness of the frame-
work due to the decoupling of the surface mesh form the volume mesh. Par-
allel efficiency of the framework was maintained even when subject to limited
CAD resources by dynamically re-allocating the processors of the flow solver,
thereby using the scalability of the solver to mask the latency of the geometry
server.

6 M. Nemec, M. J. Aftosmis, and T. H. Pulliam

Design Iteration

O
bj

ec
tiv

e
Fu

nc
tio

n

2 4 6 8

10-8

10-7

10-6

10-5

10-4

10-3

Gradient
GA

(a) Convergence history (b) Initial configuration, Gradient

(c) Final configuration, Gradient (d) Final configuration, GA

Fig. 4. Design example summary (Contour plots denote surface Mach number)

7 Acknowledgments

The authors gratefully acknowledge Robert Haimes (MIT). This work was performed

while the first author held an NRC Research Associateship Award.

References

1. Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and Efficient Cartesian
Mesh Generation for Componenet-Based Geometry,” AIAA J., Vol. 36-6, 1998.

2. Aftosmis, M. J., Berger, M. J., and Adomavicius, G., “A Parallel Multilevel
Method for Adaptively Refined Cartesian Grids with Embedded Boundaries,”
AIAA Paper 2000–0808, Reno, NV, Jan. 2000.

3. Nemec, M., Aftosmis, M. J., and Pulliam, T. H., “CAD-Based Aerodynamic
Design of Complex Configurations Using a Cartesian Method,” AIAA Paper
2004–0113, Reno, NV, Jan. 2004.

4. Haimes, R. and Aftosmis, M. J., “On Generating High Quality ”Water-tight”
Triangulations Directly from CAD,” ISGG, June 2002.

5. Haimes, R. and Crawford, C., “Unified Geometry Access for Analysis and De-
sign,” 12th International Meshing Roundtable, Sept. 2003.

6. Aftosmis, M. J., “On the Use of CAD-Native Predicates and Geometry in Surface
Meshing,” NASA TM 1999–208782, Aug. 1999.

7. Haimes, R. and Aftosmis, M. J., “Watertight Anisotropic Surface Meshing Using
Quadrilateral Patches,” 13th International Meshing Roundtable, Sept. 2004.

